X-Git-Url: https://jasonwoof.com/gitweb/?p=vor.git;a=blobdiff_plain;f=sprite.c;h=447e4827525329005a673f07b098d5115227d902;hp=ca3e937ab21cfc0e940572c5ed43dafe351ce06e;hb=148882a3cc520f34616a1175ed157fe258d68dcc;hpb=f33f1a05297ce0156030f0f78ecf5b84e00d424c diff --git a/sprite.c b/sprite.c index ca3e937..447e482 100644 --- a/sprite.c +++ b/sprite.c @@ -1,121 +1,448 @@ +#include #include +#include +#include "config.h" #include "common.h" +#include "globals.h" #include "sprite.h" +#include "rocks.h" -void -get_shape(SDL_Surface *img, struct shape *s) +SDL_Surface *load_image(char *filename); +void load_ship(void); + +// 2 sets of sprites, sorted by position +static Sprite **sprites[2] = { NULL, NULL }; + +// which set are we using? +static int set = 0; + +// size of squares into which sprites are sorted. +static int grid_size = 0; + +// screen size in grid squares. +static int gw = 0, gh = 0; + +// lists of free sprites, by type. +Sprite *free_sprites[N_TYPES]; + + +static void +get_shape(Sprite *s) { int x, y; uint16_t *px, transp; uint32_t bits = 0, bit, *p; - if(img->format->BytesPerPixel != 2) { + s->area = 0; + if(s->image->format->BytesPerPixel != 2) { fprintf(stderr, "get_shape(): not a 16-bit image!\n"); exit(1); } - s->area = 0; - s->w = img->w; s->h = img->h; - s->mw = ((img->w+31)>>5); - s->mask = malloc(4*s->mw*s->h); + s->w = s->image->w; s->h = s->image->h; + grid_size = max(grid_size, max(s->w, s->h)); + s->mask_w = ((s->w+31)>>5); + s->mask = malloc(s->mask_w*s->h*sizeof(uint32_t)); if(!s->mask) { - fprintf(stderr, "can't malloc bitmask"); + fprintf(stderr, "get_shape(): can't allocate bitmask.\n"); exit(1); } - SDL_LockSurface(img); - px = img->pixels; - transp = img->format->colorkey; + SDL_LockSurface(s->image); + px = s->image->pixels; + transp = s->image->format->colorkey; p = s->mask; - for(y=0; yh; y++) { + for(y=0; yimage->h; y++) { bit = 0; - for(x=0; xw; x++) { + for(x=0; ximage->w; x++) { if(!bit) { bits = 0; bit = 0x80000000; } if(*px++ != transp) { bits |= bit; s->area++; } bit >>= 1; - if(!bit || x == img->w - 1) { *(p++) = bits; } + if(!bit || x == s->image->w - 1) { *(p++) = bits; } } - px = (uint16_t *) ((uint8_t *) px + img->pitch - 2*img->w); + px = (uint16_t *) ((uint8_t *) px + s->image->pitch - 2*s->image->w); } - SDL_UnlockSurface(img); + SDL_UnlockSurface(s->image); } -int -line_collide(int xov, struct shape *r, uint32_t *rbits, struct shape *s, uint32_t *sbits) + +void +load_sprite(Sprite *s, char *filename) { - int lshift, n, i, ret = 0; - uint32_t lbits; - struct shape *st; - uint32_t *bt; + s->image = load_image(filename); + if(s->image) get_shape(s); +} + +static void +load_sprites(void) +{ + load_ship(); + load_rocks(); +} - if(xov < 0) { - st = r; r = s; s = st; - bt = rbits; rbits = sbits; sbits = bt; - xov = -xov; + +void +init_sprites(void) +{ + load_sprites(); + + grid_size = grid_size * 3 / 2; + gw = (XSIZE-1 + 2*grid_size) / grid_size; + gh = (YSIZE-1 + 2*grid_size) / grid_size; + + sprites[0] = malloc(2 * gw * gh * sizeof(Sprite *)); + sprites[1] = (void *)sprites[0] + gw * gh * sizeof(Sprite *); + if(!sprites[0]) { + fprintf(stderr, "init_sprites(): can't allocate grid squares.\n"); + exit(1); } + memset(sprites[0], 0, 2 * gw * gh * sizeof(Sprite *)); + set = 0; +} + +static inline Sprite ** +square(int x, int y, int set) +{ + int b = (x+grid_size)/grid_size + gw*((y+grid_size)/grid_size); + return &sprites[set][b]; +} +void +add_sprite(Sprite *s) +{ + insert_sprite(square(s->x, s->y, set), s); +} + +void +reset_sprites(void) +{ + int i; - lshift = (r->w - xov) & 31; - rbits += (r->w - xov) >> 5; - n = (xov + 31) >> 5; - for(i=0; i> (32 - lshift); - if(lbits & *sbits++) ret = 1; + for(i=0; itype], s); + s->flags = 0; + } +} + +void +move_sprite(Sprite *s) +{ + if(s->flags & MOVE) { + s->x += (s->dx - screendx)*t_frame; + s->y += (s->dy - screendy)*t_frame; } - lbits = *rbits << lshift; - if(lbits & *sbits) ret = 1; +} - return ret; +void +sort_sprite(Sprite *s) +{ + // clip it, or sort it into the other set of sprites. + if(s->x + s->w < 0 || s->x >= XSIZE + || s->y + s->h < 0 || s->y >= YSIZE) { + insert_sprite(&free_sprites[s->type], s); + s->flags = 0; + } else insert_sprite(square(s->x, s->y, 1-set), s); } -int -mask_collide(int xov, int yov, struct shape *r, struct shape *s) +void +move_sprites(void) +{ + int sq; + Sprite **head; + + // Move all the sprites + for(sq=0; sq> 5; + uint32_t abits; + + for(i=0; i> (32-bit); + if(abits & *bmask++) return true; + } + abits = *amask << bit; + if(abits & *bmask) return true; + + return false; +} + +static int +mask_collide(int xov, int yov, Sprite *a, Sprite *b) { - int y, ry, sy; - uint32_t *rbits, *sbits; + int y; + int xoffset = a->w - xov; + int word = xoffset >> 5, bit = xoffset & 31; + uint32_t *amask = a->mask, *bmask = b->mask; if(yov > 0) { - ry = r->h - yov; sy = 0; - rbits = r->mask + (r->h - yov) * r->mw; - sbits = s->mask; + amask = a->mask + ((a->h - yov) * a->mask_w) + word; + bmask = b->mask; } else { - ry = 0; sy = s->h + yov; - rbits = r->mask; - sbits = s->mask + (s->h + yov) * s->mw; + yov = -yov; + amask = a->mask; + bmask = b->mask + ((b->h - yov) * b->mask_w) + word; } - for(y=0; ymw; sbits += s->mw; + for(y=0; ymask_w; bmask += b->mask_w; } return 0; } int -collide(int xdiff, int ydiff, struct shape *r, struct shape *s) +collide(Sprite *a, Sprite *b) +{ + int dx, dy, xov, yov; + + if(!COLLIDES(a) || !COLLIDES(b)) return false; + + if(b->x < a->x) { Sprite *tmp = a; a = b; b = tmp; } + + dx = b->x - a->x; + dy = b->y - a->y; + + xov = max(min(a->w - dx, b->w), 0); + + if(dy >= 0) yov = max(min(a->h - dy, b->h), 0); + else yov = -max(min(b->h - -dy, a->h), 0); + + if(xov == 0 || yov == 0) return false; + else return mask_collide(xov, yov, a, b); +} + +void +collide_with_list(Sprite *s, Sprite *list) +{ + for(; list; list=list->next) + if(collide(s, list)) do_collision(s, list); +} + +void +collisions(void) +{ + int i, end = gw*gh; + Sprite *s; + for(i=0; inext) { + collide_with_list(s, s->next); + if(i+1 < end) collide_with_list(s, sprites[set][i+1]); + if(i+gw < end) collide_with_list(s, sprites[set][i+gw]); + if(i+gw+1 < end) collide_with_list(s, sprites[set][i+gw+1]); + } + } +} + +Sprite * +hit_in_square(Sprite *r, Sprite *s) +{ + for(; r; r=r->next) + if(collide(r, s)) break; + return r; +} + +Sprite * +collides(Sprite *s) { - int xov, yov; + int l, r, t, b; + Sprite **sq; + Sprite *c; - if(xdiff >= 0) xov = max(min(r->w-xdiff, s->w), 0); - else xov = min(-min(s->w+xdiff, r->w), 0); + l = (s->x + grid_size) / grid_size; + r = (s->x + s->w + grid_size) / grid_size; + t = (s->y + grid_size) / grid_size; + b = (s->y + s->h + grid_size) / grid_size; + sq = &sprites[set][l + t*gw]; - if(ydiff >= 0) yov = max(min(r->h-ydiff, s->h), 0); - else yov = min(-min(s->h+ydiff, r->h), 0); + if((c = hit_in_square(*sq, s))) return c; + if(l > 0 && (c = hit_in_square(*(sq-1), s))) return c; + if(t > 0 && (c = hit_in_square(*(sq-gw), s))) return c; + if(l > 0 && t > 0 && (c = hit_in_square(*(sq-1-gw), s))) return c; - if(xov == 0 || yov == 0) return 0; // bboxes hit? - else return mask_collide(xov, yov, r, s); + if(r > l) { + if((c = hit_in_square(*(sq+1), s))) return c; + if(t > 0 && hit_in_square(*(sq+1-gw), s)) return c; + } + if(b > t) { + if((c = hit_in_square(*(sq+gw), s))) return c; + if(l > 0 && (c = hit_in_square(*(sq-1+gw), s))) return c; + } + if(r > l && b > t && (c = hit_in_square(*(sq+1+gw), s))) return c; + return NULL; } int -pixel_collide(unsigned int xoff, unsigned int yoff, struct shape *r) +pixel_collide(Sprite *s, int x, int y) { uint32_t pmask; + + if(!COLLIDES(s)) return false; - if(xoff >= r->w || yoff >= r->h) return 0; + if(x < s->x || y < s->y || x >= s->x + s->w || y >= s->y + s->h) return 0; + + x -= s->x; y -= s->y; + pmask = 0x80000000 >> (x&0x1f); + return s->mask[(y*s->mask_w) + (x>>5)] & pmask; +} + +Sprite * +pixel_hit_in_square(Sprite *r, float x, float y) +{ + for(; r; r=r->next) { + if(COLLIDES(r) && pixel_collide(r, x, y)) return r; + } + return 0; +} + +Sprite * +pixel_collides(float x, float y) +{ + int l, t; + Sprite **sq; + Sprite *ret; + + l = (x + grid_size) / grid_size; t = (y + grid_size) / grid_size; + sq = &sprites[set][l + t*gw]; + if((ret = pixel_hit_in_square(*sq, x, y))) return ret; + if(l > 0 && (ret = pixel_hit_in_square(*(sq-1), x, y))) return ret; + if(t > 0 && (ret = pixel_hit_in_square(*(sq-gw), x, y))) return ret; + if(l > 0 && t > 0 && (ret = pixel_hit_in_square(*(sq-1-gw), x, y))) return ret; + return 0; +} + + +float +sprite_mass(Sprite *s) +{ + if(s->type == SHIP) return s->area; + else if(s->type == ROCK) return 3 * s->area; + else return 0; +} + +/* + * BOUNCE THEORY + * + * ****************** In 1 Dimension ***************** + * + * For now we will imagine bouncing A and B off each other in 1 dimension (along + * a line). We can safely save the other dimension for later. + * + * A and B are the same weight, and are both traveling 1m/sec, to collide right + * at the origin. With perfect bounciness, their full momentum is reversed. + * + * If we cut the weight of A down by half, then the center of our colision will + * drift towards A (the speeds of A and B are not simply reversed as in our last + * example.) However, there is always a place between A and B on the line (I'll + * call it x) such that the speeds of A and B relative to x, are simply + * reversed. Thus we can find the new speed for A like so: + * + * new A = x -(A - x) + * + * new B = x -(B - x) + * + * or, simply: + * + * new A = 2x - A + * + * new B = 2x - B + * + * + * this point x is the sort of center of momentum. If, instead of bouncing, A + * and B just globbed together, x would be center of the new glob. + * + * x is the point where there's an equal amount of force coming in from both + * sides. ie the weighted average of the speeds of A and B. + * + * average force = (A force + B force) / total mass + * + * x.speed = (a.speed * a.mass + b.speed * b.mass) / (a.mass + b.mas) + * + * then we apply the formula above for calculating the new A and B. + * + * + * + * + * ****************** In 2 Dimensions ***************** + * + * OK, that's how we do it in 1D. Now we need to deal with 2D. + * + * Imagine (or draw) the two balls just as they are bouncing off each other. + * Imagine drawing a line through the centers of the balls. The balls are + * exerting force on each other only along this axis. So if we rotate + * everything, we can do our earlier 1D math along this line. + * + * It doesn't matter what direction the balls are going in, they only exert + * force on each other along this line. What we will do is to compute the part + * of the balls' momentum that is going along this line, and bounce it according + * to our math above. The other part is unaffected by the bounce, and we can + * just leave it alone. + * + * To get this component of the balls' momentum, we can use the dot product. + * + * dot(U, V) = length(U) * length(V) * cos(angle between U and V) + * + * If U is a length 1 vector, then dot(U, V) is the length of the component of V + * in the direction of U. So the components of V are: + * + * U * dot(U, V) parallel to U + * + * V - U * dot(U, V) perpendicular to U + * + * To do the actual bounce, we compute the unit vector between the center of the + * two balls, compute the components of the balls' speeds along this vector (A + * and B), and then bounce them according to the math above: + * + * new A = 2x - A + * + * new B = 2x - B + * + * But we rewrite it in relative terms: + * + * new A = A + 2(x-A) + * + * new B = B + 2(x-B) + */ + +void +bounce(Sprite *a, Sprite *b) +{ + float x, y, n; // (x, y) is unit vector from a to b. + float va, vb; // va, vb are balls' speeds along (x, y) + float ma, mb; // ma, mb are the balls' masses. + float vc; // vc is the "center of momentum" + + // (x, y) is unit vector pointing from A's center to B's center. + x = (b->x + b->w / 2) - (a->x + a->w / 2); + y = (b->y + b->h / 2) - (a->y + a->h / 2); + n = sqrt(x*x + y*y); x /= n; y /= n; + + // velocities along (x, y) + va = x*a->dx + y*a->dy; + vb = x*b->dx + y*b->dy; + if(vb-va > 0) return; // don't bounce if we're already moving away. + + // get masses and compute "center" speed + ma = sprite_mass(a); mb = sprite_mass(b); + vc = (va*ma + vb*mb) / (ma+mb); - pmask = 0x80000000 >> (xoff&0x1f); - return r->mask[(yoff*r->mw) + (xoff>>5)] & pmask; + // bounce off the center speed. + a->dx += 2*x*(vc-va); a->dy += 2*y*(vc-va); + b->dx += 2*x*(vc-vb); b->dy += 2*y*(vc-vb); }